عنوان پایان‌نامه

انتخاب و بهینه سازی پرتفویی از اوراق بهادار با استفاده از الگوریتم ژنتیک دو مرحله ای باینری و پیوسته بر مبنای معیار شارپ در بورس اوراق بهادار تهران




    رشته تحصیلی
    مدیریت مالی
    مقطع تحصیلی
    کارشناسی ارشد
    محل دفاع
    کتابخانه مرکزی -تالار اطلاع رسانی شماره ثبت: 76494;کتابخانه مرکزی -تالار اطلاع رسانی شماره ثبت: 76494;کتابخانه پردیس قم شماره ثبت: 002455;کتابخانه پردیس قم شماره ثبت: 002455
    تاریخ دفاع
    ۱۶ شهریور ۱۳۹۵
    دانشجو
    داود فتوحی
    استاد راهنما
    علیرضا سارنج

    صنعت سرمایه¬گذاری در طی چند دهه اخیر از لحاظ نظری و عملی به سرعت رشد ‌یافته‌است و به روشنی می‌توان ‌این رشد را در بازارهای مالی ‌ایران نیز مشاهده نمود. سرمایه‌گذاری یک فرایند بوده و مسئله‌ی بهینه‌سازی پرتفوی نیز، جزئی از این فرایند می‌باشد. بهینه‌سازی پرتفوی به معنای تعیین انواع و میزان اوراق¬بهاداری است که سرمایه‌گذار، مایل به سرمایه‌گذاری در آنهاست. دو رویکرد مهمی که تاکنون برای حل این مسئله، مطرح شده‌اند عبارت‌اند از: روش‌های ریاضی و روش‌های فراابتکاری. به مرور زمان و بر اساس تحقیقات صورت گرفته، مشخص شده که الگوهای برنامه‌ریزی ریاضی (از جمله مدل مارکویتز)، در زمینه‌ی حل الگوی برنامه‌ریزی غیرخطیِ مسئله‌ی بهینه‌سازی پرتفوی، با محدودیت‌هایی مواجه هستند. اما الگوریتم‌های فراابتکاری، نوعی از الگوریتم‌های تصادفی هستند که برای یافتن پاسخ بهینه به کاررفته و دارای راهکارهای برونرفت جهت پَرِش از نقاط بهینه محلی هستند. از میان روش‌های فراابتکاری مبتنی بر جمعیت، ما از یک مدل الگوریتم ژنتیک دو مرحله‌ای استفاده کردیم. الگوریتم اول، صرفا اقدام به شناسایی اوراق‌بهادار منتخب نموده و الگوریتم دوم، اقدام به تعیین وزن (درصد سرمایه‌گذاری) هر یک از اوراقِ منتخب، در پرتفوی بهینه می‌نماید. دراین راستا، ابتدا شرکتهایی را به صورت ماهانه و به مدت 48 ماه، از لیست 50 شرکت فعالتر بورس تهران انتخاب کرده و داده‌های آنها را وارد الگوریتم ژنتیک مرحله اول و مدل مارکویتز نمودیم. تابع برازش استفاده شده در هردو الگوریتم، نسبت شارپ بوده و مدل ژنتیک در نهایت، وزن‌ اوراق و نسبت شارپ متعاق به هر پرتفوی بهینه را محاسبه می‌کند. همچنین نسبت شارپ مربوط به شاخص 50 شرکت و نیز نسبت شارپ متعلق به مدل مارکویتز را محاسبه کرده و هرکدام را جداگانه با مدل ژنتیک مقایسه نمودیم. نتایج، حاکی از برتری عملکرد مدل ژنتیک نسبت به عملکرد شاخص 50 شرکت و نیز یکسان بودن عملکرد مدل‌های ژنتیک و مارکویتز می‌باشد.
    Abstract
    The investment industry has grown rapidly in recent decades in terms of theory and practice. This growth can clearly be seen in the Iran financial markets. Investment is a process and portfolio optimization is also part of this process. Portfolio optimization means to determine the types and amount of securities that an investor is willing to invest in them. Two key approaches have been suggested to solve this problem: mathematical and meta-heuristic methods. Over time and based on the researches, it was found that mathematical programming models (such as the Markowitz model) have limitations in solving the nonlinear programming model of the portfolio optimization problem. But metaheuristic algorithms are a kind of random algorithms which are used to find optimized answers and have solutions to jump out of the local optimum points. Among the population-based metaheuristic methods, we used a two-stage genetic algorithm model. The first algorithm merely attempts to select securities; and the second algorithm determines the weight (percentage of investment) of any the securities selected from the first algorithm. In this regard, we chose some companies on a monthly basis for 48 months from a list of top 50 active companies in Tehran Stock Exchange and put their data into the first stage genetic algorithm and the Markowitz model. The fitness function used in both algorithms was the Sharpe ratio. Finally, we calculated the securities’ weights and the Sharpe ratios relating to each optimal portfolio by using the genetic model. Also, we obtained the Sharpe ratio of the 50 companies’ index and the Markowitz model’s Sharpe ratio and then compared each individually with the genetic model. The results indicated superior performance of the genetic model compared to that of the index of the 50 companies and the same performance of genetic and Markowitz models.